線性執(zhí)行器運(yùn)動(dòng)系統(tǒng)術(shù)語表(中英文)
(絕對)精度 – 理想位置與實(shí)際位置之間的差異。
絕對定位 – 指采用位置反饋裝置來保持給定機(jī)械位置的運(yùn)動(dòng)控制系統(tǒng)。
ACME 絲杠 – 機(jī)器應(yīng)用中最常見的絲杠類型。 ACME 螺紋是一種特殊類型的螺紋。與滾珠絲杠相比, ACME 絲杠具有非常高的摩擦力和反沖力,這兩者都不適合高性能應(yīng)用。
交流電機(jī) – 一種使用交流電運(yùn)行的電動(dòng)機(jī)。交流電機(jī)在工業(yè)中比直流電機(jī)更常用,但在低速下運(yùn)行不佳。
精度 – 某物與其絕對值或完美值相比的相對狀態(tài)。在運(yùn)動(dòng)控制中,這通常是位置描述。例如,命令可以設(shè)置為 4.0 英寸。系統(tǒng)的精度將根據(jù)系統(tǒng)對移動(dòng)的影響接近 4.0 英寸的絕對值來定義。準(zhǔn)確度可以定義為一次性事件或多個(gè)周期或運(yùn)動(dòng)的平均值。定位精度通常用偏差(與理論值的 +/-)或極限(與理論值的可接受偏差)來定義:即 3.8 - 4.3 英寸定義理論點(diǎn)周圍可接受的偏差極限。
實(shí)際位置 – 軸相對于指令位置的位置。這可能是指令移動(dòng)結(jié)束時(shí)的位置,或移動(dòng)過程中任何一點(diǎn)的指令位置與該點(diǎn)軸的實(shí)際位置之間的滯后。后者通常稱為跟隨誤差。
弧分 – 等于 1/60 度的角度測量。
運(yùn)動(dòng)軸:受控運(yùn)動(dòng)發(fā)生的特定主要方向。通常指特定機(jī)器中采用的這些主要方向的數(shù)量。通常定義如下:
X:定位方向上的線性運(yùn)動(dòng)
Y:垂直于定位方向的線性運(yùn)動(dòng)
Z:垂直線性運(yùn)動(dòng)
A:繞 X 的角運(yùn)動(dòng)(滾動(dòng))
B:繞 Y 的角運(yùn)動(dòng)(俯仰)
C:繞 Z 的角運(yùn)動(dòng)(偏航)
軸向載荷– 軸承的術(shù)語“軸向載荷”和“徑向載荷”:軸向載荷是與軸承旋轉(zhuǎn)軸平行的任何載荷。徑向載荷是與旋轉(zhuǎn)軸垂直的任何載荷。
軸向游隙 – 由于軸向力的反轉(zhuǎn)而導(dǎo)致的軸的軸向位移。
軸 – 工具、部件或工件移動(dòng)的主要方向??刂茩C(jī)器中每個(gè)自由度的部件可視為軸。X-Y-Z 機(jī)器是一種三軸機(jī)器,其中 X 軸和 Y 軸控制水平面的運(yùn)動(dòng),Z 軸控制上下運(yùn)動(dòng)。每個(gè)軸可以由控制器、驅(qū)動(dòng)器、電機(jī)和傳輸組件組成,這些組件是耦合到負(fù)載所必需的。
軸 – 軸的復(fù)數(shù)。
間隙 – 由機(jī)械部件之間的松散連接引起的間隙。當(dāng)軸改變方向時(shí),間隙會(huì)成為一個(gè)問題。當(dāng)電機(jī)轉(zhuǎn)動(dòng)時(shí),它會(huì)將所有齒輪推向一個(gè)方向。當(dāng)電機(jī)反轉(zhuǎn)時(shí),齒輪齒從一側(cè)分離,在另一側(cè)相遇。分離的距離就是齒隙。
滾珠絲杠 – 滾珠絲杠是一種高效、低摩擦、低齒隙的導(dǎo)螺桿裝置,使用滾珠軸承在絲杠切入的通道中滾動(dòng)。低摩擦和齒隙屬性對于用于驅(qū)動(dòng)機(jī)器軸的精密應(yīng)用極其有價(jià)值。
無刷電機(jī) – 無刷電機(jī)是一類使用相電流電子換向而不是機(jī)電(電刷型)換向來運(yùn)行的電機(jī)。無刷電機(jī)通常具有永磁轉(zhuǎn)子和繞線定子。
圓弧插補(bǔ) – 通過兩個(gè)軸的協(xié)調(diào)運(yùn)動(dòng)產(chǎn)生明顯的圓弧運(yùn)動(dòng)。實(shí)際路徑是一系列由軟件算法生成的直線近似值。
碰撞檢測 – 使用傳感器檢測運(yùn)動(dòng)控制系統(tǒng)中兩個(gè)或多個(gè)部件即將發(fā)生的碰撞。檢測傳感器的信號可用于停止運(yùn)動(dòng)或提供逐漸減速以實(shí)現(xiàn)接近部件的“軟”配合。
協(xié)調(diào) – 兩個(gè)或多個(gè)運(yùn)動(dòng)軸的運(yùn)動(dòng)的整合,因此產(chǎn)生的運(yùn)動(dòng)是任何軸都無法獨(dú)立完成的路徑。協(xié)調(diào)還可能涉及在整合工作中使用傳感器和其他內(nèi)部或外部命令,以幫助實(shí)現(xiàn)所需的運(yùn)動(dòng)或工作。
耦合(耦合器、耦合器) – 通過它們之間的互電容將能量從一個(gè)電路傳輸?shù)搅硪粋€(gè)電路。在反饋和控制系統(tǒng)中,這被認(rèn)為是電噪聲,是一個(gè)常見問題。
按長度切割 – 運(yùn)動(dòng)控制過程或獨(dú)立過程的子程序,其中進(jìn)料材料以預(yù)設(shè)距離進(jìn)行處理。距離在執(zhí)行任務(wù)和/或次要任務(wù)(例如切斷進(jìn)料材料)之前設(shè)置。采用反饋系統(tǒng)來確保預(yù)設(shè)進(jìn)料長度的可重復(fù)性。
制動(dòng)扭矩 – 制動(dòng)扭矩是電機(jī)中無電流流動(dòng)時(shí)的保持扭矩??墒┘拥轿赐姴竭M(jìn)電機(jī)軸上而不導(dǎo)致連續(xù)旋轉(zhuǎn)的最大扭矩。未通電電機(jī)中存在的最小扭矩。步進(jìn)電機(jī)的制動(dòng)扭矩通常約為其靜態(tài)通電扭矩的 1%。
動(dòng)態(tài)扭矩 – 電機(jī)在低速步進(jìn)時(shí)產(chǎn)生的扭矩。
效率 – 物理學(xué)中:有效的能量使用、每單位能量的有用功或相對于理想機(jī)械優(yōu)勢的機(jī)械優(yōu)勢,通常用希臘小寫字母 η (Eta) 表示。在熱力學(xué)中:效率是能量轉(zhuǎn)換效率,是第二定律熱力學(xué)損失的量度。熱效率:燃料高熱值下的有用功。在計(jì)算中:算法效率是優(yōu)化計(jì)算機(jī)程序的速度和內(nèi)存需求,而存儲(chǔ)效率是計(jì)算機(jī)數(shù)據(jù)存儲(chǔ)的有效性。
電子離合器 – 通過啟用和禁用電子凸輪或齒輪傳動(dòng)功能,根據(jù)主位置或時(shí)間段生成從屬配置文件的過程。
電子齒輪傳動(dòng) – 一種通過可變比率將一個(gè)閉環(huán)軸與第二個(gè)軸(開環(huán)或閉環(huán))電同步來刺激機(jī)械齒輪的方法。
電子線軸 – 用作機(jī)器上的主軸的虛擬軸,其他軸通過電子齒輪傳動(dòng)或凸輪輪廓與該軸同步。
編碼器 – 編碼器是一種反饋設(shè)備。它由圓盤、葉片或反射器組成,通常連接到電機(jī)軸以提供數(shù)字脈沖,這些脈沖提供給轉(zhuǎn)換器和/或計(jì)數(shù)器。如果輸入到計(jì)數(shù)器中,這將提供位置信息。如果測量并解碼連續(xù)脈沖之間的時(shí)間,則可以得出速度信息。
編碼器分辨率 – 輸入軸旋轉(zhuǎn) 360 度時(shí)出現(xiàn)的電氣識別位置數(shù)。
事件 – 輸入?yún)?shù)的狀態(tài)變化,例如限位開關(guān)或接近傳感器的觸發(fā)。
故障 – 驅(qū)動(dòng)器或控制器嘗試非法過程并被禁用時(shí)收到的錯(cuò)誤。
反饋 – 反饋是被控制參數(shù)的測量值。為了使定位系統(tǒng)準(zhǔn)確補(bǔ)償誤差,必須知道相對于命令位置的實(shí)際位置。在這種情況下,位置反饋將用于提供實(shí)際位置。
反饋信號 – 傳感器在過程發(fā)生時(shí)檢測到的實(shí)際值。反饋信號是閉環(huán)控制系統(tǒng)的一部分。
前饋 – 一種“預(yù)補(bǔ)償”控制回路已知誤差的方法,這些誤差是由于電機(jī)、驅(qū)動(dòng)器或負(fù)載特性引起的,以改善響應(yīng)。它僅取決于命令,而不取決于測量的誤差。
龍門架 – 一種設(shè)計(jì)用于沿 X、Y 和/或 Z 軸線性移動(dòng)的架空框架??蚣苤型ǔTO(shè)計(jì)有工具或其他設(shè)備,以便在從一個(gè)位置移動(dòng)到另一個(gè)位置時(shí)執(zhí)行各種功能。
變速箱 – 一種齒輪系統(tǒng),將機(jī)械動(dòng)力從原動(dòng)機(jī)(例如電動(dòng)機(jī))傳輸?shù)酵ǔ>哂休^低動(dòng)量但較高扭矩的旋轉(zhuǎn)輸出設(shè)備。
保持扭矩 – 保持扭矩是當(dāng)電動(dòng)機(jī)的一個(gè)或多個(gè)相通電時(shí),可以外部施加到電動(dòng)機(jī)軸上而不會(huì)導(dǎo)致連續(xù)旋轉(zhuǎn)的最大扭矩。
原點(diǎn)位置 – 所有絕對定位運(yùn)動(dòng)的參考位置。通常由原點(diǎn)限位開關(guān)和/或編碼器標(biāo)記定義。通常在通電時(shí)設(shè)置
歸位 – 在通電時(shí)定位唯一的參考位置以進(jìn)行軸校準(zhǔn)。
索引器 – 在基于步進(jìn)電機(jī)的系統(tǒng)中,索引器是一種向步進(jìn)電機(jī)驅(qū)動(dòng)器提供步進(jìn)和方向控制信號的設(shè)備。更復(fù)雜的專用步進(jìn)電機(jī)控制器還將具有 I/O 點(diǎn)和各種其他更高級的功能以及與 PLC 類似的可編程性。在許多情況下,PLC 可用作索引器。
索引 - 以定義的速度和加速度/減速度移動(dòng)到預(yù)編程位置的一個(gè)或多個(gè)軸。
插補(bǔ) - 兩個(gè)或多個(gè)軸以線性和/或圓周運(yùn)動(dòng)協(xié)調(diào)移動(dòng)。
點(diǎn)動(dòng) - 以固定速度和加速度/減速度在選定方向上運(yùn)行的軸,沒有特定的目的地。
導(dǎo)程 - 絲杠上螺母在絲杠旋轉(zhuǎn)一圈期間行進(jìn)的線性距離,例如英寸/轉(zhuǎn)
絲杠 - 將旋轉(zhuǎn)運(yùn)動(dòng)轉(zhuǎn)換為線性運(yùn)動(dòng)的裝置。
限制 – 運(yùn)動(dòng)系統(tǒng)內(nèi)的傳感器,用于提醒控制電子設(shè)備已接近行程的物理終點(diǎn),并且不允許在特定方向上運(yùn)動(dòng)。
線性執(zhí)行器 – 線性執(zhí)行器是一種產(chǎn)生直線運(yùn)動(dòng)的執(zhí)行器,與傳統(tǒng)電動(dòng)機(jī)的旋轉(zhuǎn)運(yùn)動(dòng)形成對比。線性執(zhí)行器用于機(jī)床和工業(yè)機(jī)械、計(jì)算機(jī)外圍設(shè)備(如磁盤驅(qū)動(dòng)器和打印機(jī))、閥門和阻尼器以及許多其他需要線性運(yùn)動(dòng)的地方。液壓缸或氣動(dòng)缸本身會(huì)產(chǎn)生線性運(yùn)動(dòng);許多其他機(jī)制用于從旋轉(zhuǎn)電機(jī)提供線性運(yùn)動(dòng)。
線性伺服電機(jī) – 線性伺服電機(jī)是一種“扁平”伺服電機(jī),轉(zhuǎn)子位于內(nèi)部,線圈位于可移動(dòng) U 形通道的外部。
線性滑軌 – 線性滑軌是精密產(chǎn)品,旨在將運(yùn)動(dòng)或扭矩轉(zhuǎn)化為直線運(yùn)動(dòng)。線性滑軌旨在沿給定軸移動(dòng)安裝的機(jī)構(gòu)。完整的滑軌通常至少由一個(gè)底座、一個(gè)鞍座、一個(gè)調(diào)節(jié)螺釘和一個(gè)直楔組成。
負(fù)載 – 施加到電機(jī)上的任何外部運(yùn)動(dòng)阻力(靜態(tài)或動(dòng)態(tài))。
軸上精度 – 補(bǔ)償線性誤差后理想位置與實(shí)際位置之間的差異。線性誤差包括:余弦誤差、螺釘或線性刻度螺距不準(zhǔn)確、測量點(diǎn)的角度偏差(阿貝誤差)和熱膨脹效應(yīng)。絕對精度和軸上精度之間的關(guān)系如下:
絕對精度 = 軸上精度 + 校正系數(shù) x 行程
超控 – 在故障情況下強(qiáng)制軸移動(dòng);通常需要強(qiáng)制軸脫離超程限位開關(guān)。
相位調(diào)整 – 在同步或電子線軸傳動(dòng)期間調(diào)整一個(gè)軸相對于其他軸的位置。這通常在軸移動(dòng)時(shí)完成,并用于糾正小的配準(zhǔn)問題。
拾取和放置 – 將物體從一個(gè)地方轉(zhuǎn)移到另一個(gè)地方的應(yīng)用,例如藥丸分揀機(jī)、醫(yī)用小瓶(試管)測試或空氣樣本測試儀。
螺距 – 螺釘一個(gè)螺紋上的任何一點(diǎn)到下一個(gè)連續(xù)螺紋上相應(yīng)點(diǎn)的距離,例如轉(zhuǎn)/英寸。
定位 – 通過提供目標(biāo)位置、速度和加速度來指定移動(dòng)。目標(biāo)位置可以是絕對位置,也可以是相對于當(dāng)前位置的相對位置。
位置控制 – 一種設(shè)計(jì)用于將物體或機(jī)器移動(dòng)到已知位置的控制系統(tǒng)。例如:步進(jìn)電機(jī)用于位置控制。
位置環(huán) – 位置環(huán)通過連續(xù)比較目標(biāo)位置和當(dāng)前位置來運(yùn)行。兩者之間的差異是位置誤差或跟隨誤差。
額定速度 – 制造商指定的電機(jī)產(chǎn)生最大額定功率的速度
額定扭矩 – 額定扭矩是電機(jī)在給定速度下的扭矩產(chǎn)生能力。這通常用扭矩/速度曲線來指定。
伺服機(jī)構(gòu) – 伺服機(jī)構(gòu)可能使用也可能不使用伺服電機(jī)。例如,家用爐子就是由恒溫器控制的伺服機(jī)構(gòu)。一旦達(dá)到設(shè)定溫度,反饋信號就會(huì)使系統(tǒng)關(guān)閉,從而使其本質(zhì)上成為“伺服”。術(shù)語“伺服”更多地描述了一種功能或任務(wù),而不是特定的產(chǎn)品線。伺服機(jī)構(gòu)的定義特征是使用反饋,從而創(chuàng)建閉環(huán)系統(tǒng)。
伺服電機(jī) – 伺服電機(jī)是伺服機(jī)構(gòu)的一部分。它通常與某種類型的編碼器配對,以提供定位和速度反饋。伺服電機(jī)是一種使用糾錯(cuò)程序來控制其運(yùn)動(dòng)的自動(dòng)裝置。術(shù)語伺服可以應(yīng)用于伺服電機(jī)以外的系統(tǒng);使用反饋機(jī)制(例如編碼器或其他反饋設(shè)備)來控制運(yùn)動(dòng)參數(shù)的系統(tǒng)。通常,當(dāng)使用術(shù)語伺服時(shí),它適用于“伺服電機(jī)”,但也用作一般控制術(shù)語,這意味著使用反饋回路來定位物品。伺服電機(jī)可以是直流電機(jī)、交流電機(jī)或無刷直流電機(jī),并結(jié)合位置傳感器(大多數(shù)情況下是數(shù)字編碼器)。伺服電機(jī)的定義特征是它在閉環(huán)系統(tǒng)中運(yùn)行(使用反饋)。
屏蔽電纜 - 一種電纜,其導(dǎo)體周圍有一層公共導(dǎo)電層,旨在提供電磁屏蔽,從而防止 EMI 問題
步進(jìn)電機(jī) – 步進(jìn)電機(jī)(也稱為步進(jìn)或步進(jìn)馬達(dá))是一種通過轉(zhuǎn)換電脈沖實(shí)現(xiàn)機(jī)械運(yùn)動(dòng)的機(jī)電設(shè)備。步進(jìn)電機(jī)由數(shù)字脈沖驅(qū)動(dòng),而不是由連續(xù)施加的電壓驅(qū)動(dòng)。與連續(xù)旋轉(zhuǎn)的傳統(tǒng)電動(dòng)機(jī)不同,步進(jìn)電機(jī)以固定的角度增量旋轉(zhuǎn)或步進(jìn)。步進(jìn)電機(jī)最常用于位置控制。在步進(jìn)電機(jī)/驅(qū)動(dòng)器/控制器系統(tǒng)設(shè)計(jì)中,假設(shè)步進(jìn)電機(jī)將遵循數(shù)字指令。步進(jìn)電機(jī)的一個(gè)重要方面是缺乏反饋來保持位置控制,這使步進(jìn)電機(jī)被歸類為開環(huán)系統(tǒng)。步進(jìn)電機(jī)可以正向或反向旋轉(zhuǎn),但不能移動(dòng)大負(fù)載。
步進(jìn) – 步進(jìn)是步進(jìn)電機(jī)轉(zhuǎn)子從一個(gè)通電位置移動(dòng)到下一個(gè)通電位置的運(yùn)動(dòng)。
步進(jìn)角 – 步進(jìn)角是步進(jìn)電機(jī)軸在相鄰步進(jìn)位置之間轉(zhuǎn)動(dòng)的標(biāo)稱角度。步進(jìn)角取決于電機(jī)和驅(qū)動(dòng)順序(驅(qū)動(dòng)模式)。步進(jìn)角越小,分辨率越高。
步進(jìn)增量 – 步進(jìn)增量是步進(jìn)或運(yùn)動(dòng)大小的指示。通常,旋轉(zhuǎn)電機(jī)以度為單位,線性電機(jī)以英寸或毫米為單位。
步進(jìn) (步進(jìn)、步進(jìn)) 電機(jī) – 步進(jìn)與步進(jìn)和步進(jìn)電機(jī)同義:一種數(shù)字執(zhí)行器,通過離散脈沖(輸入信號)運(yùn)行,以離散增量產(chǎn)生運(yùn)動(dòng),可以是旋轉(zhuǎn)的,也可以是線性的。請參閱上面的步進(jìn)電機(jī)定義。
步進(jìn)位置 – 空載步進(jìn)電機(jī)軸通電時(shí)所處的角位置。步進(jìn)位置不一定與制動(dòng)位置相同。
扭矩 – 旋轉(zhuǎn)力。扭矩以 N*m、lb*in、lb*ft 等為單位。1 N*m 是 1N 力施加到 1m 長的杠桿臂上產(chǎn)生的扭矩。
扭矩限制器 – 扭矩限制器是一種機(jī)械保護(hù)裝置,當(dāng)發(fā)生過載時(shí),它會(huì)使負(fù)載與驅(qū)動(dòng)器分離
偏航、俯仰 – 托架在移動(dòng)時(shí)繞 Z 軸(偏航)或 Y 軸(俯仰)旋轉(zhuǎn)。使用測試設(shè)備在空調(diào)室(20 °C±1 °C)內(nèi)系統(tǒng)地測試軸上精度、重復(fù)性和反向誤差。一個(gè)線性循環(huán),行程上有 21 個(gè)數(shù)據(jù)點(diǎn),每個(gè)方向有 4 個(gè)循環(huán),總共有 164 個(gè)點(diǎn)。
(Absolute) Accuracy – Difference between ideal position and real position.
Absolute Positioning – Refers to a motion control system employing position feedback devices to maintain a given mechanical location.
ACME Screw – The most common type of lead screw found in machine applications. The ACME thread is a particular type of thread. Compared to a ball screw, ACME lead screws have a very high friction and backlash, both of which are undesirable for high-performance applications.
AC Motor – A type of electric motor that runs on alternating current. AC motors are more commonly used in industry than DC motors, but do not operate well at low speeds.
Accuracy – The relative status of something compared to its absolute or perfect value. In motion control this will most often be a position description. For example, a command may be set to 4.0 inches. The accuracy of the system will be defined on how close to the absolute value of 4.0 inches the system can affect the move. Accuracy may be defined as a one-time incident or the average over a number of cycles or motions. Positioning accuracy will normally be defined in terms of deviation (+/- from the theoretical) or limits (acceptable variation from the theoretical: i.e. 3.8 - 4.3 inches define acceptable limits of variation around a theoretical point.
Actual Position – The position of an axis relative to the commanded position. This may be the position at the end of the command move, or the lag between command position at any point during the move and the actual position of the axis at that point. The latter is commonly referred to as following error.
ARC Minute – An angular measurement equal to 1/60th of a degree.
Axes of Motion: The specific major directions along which controlled movement occurs. Usually referred to as the number of these major directions employed in a specific machine. Generally defined as follows:
X: Linear motion in a positioning direction
Y: Linear motion perpendicular to the positioning direction
Z: Vertical linear movement
A: Angular motion around X (roll)
B: Angular motion around Y (pitch)
C: Angular motion around Z (yaw)
Axial Load – The terms 'axial load' and 'radial load' with respect to the bearing: Axial load is any load that is parallel to the axis of rotation of the bearing. Radial load is any load that is perpendicular to the axis of rotation.
Axial Play – The axial displacement of the shaft due to a reversal of an axial force.
Axis – A principal direction along which movement of a tool, component, or workpiece occurs. The components that control each degree of freedom in a machine can be considered an axis. An X-Y-Z machine is a three axis machine where the X and Y axes control movement in the horizontal plane and the Z axis controls up and down motion. Each axis can consist of a controller, drive, motor, and transmission components necessary to couple to the load.
Axes – Plural of axis.
Backlash – The play caused by loose connections between mechanical components. Backlash becomes a problem when an axis changes direction. When a motor turns, it pushes all the gears together in one direction. When the motor reverses direction the gear teeth separate from one side and meet on the other side. The distance of separation is the backlash.
Ball screw – Ball screws are highly efficient, low-friction and low backlash lead screw devices that use ball bearings rolling in a channel cut into the screw. The low friction and backlash attributes are extremely valuable for precision applications where they are used to drive the axes of the machine.
Brushless Motors – Brushless Motors are a class of motors that operate using electronic commutation of phase currents, rather than electromechanical (brush-type) commutation. Brushless motors typically have a permanent magnet rotor and a wound stator.
Circular Interpolation – The generation of an apparently circular motion through the coordinated movements of two axes. The actual path is a series of straight line approximations generated by software algorithms.
Collision Detection – The use of sensors to detect the imminent impact of two or more parts in a motion control system. The signals from the detection sensors can be used to stop motion or to provide a ramped slow down for a "soft" mating of the approaching components.
Coordination – The integration of the movements of two or more axes of motion, so that the resultant motion is the path which none of the axes are capable of independently. Coordination may also involve the use of sensors and other internal or external commands in the integration effort which assist in effecting the movement or work desired.
Coupling (Couple, Coupler) – The transfer of energy from one circuit to another by means of the mutual capacitance between them. In feedback and control systems this is considered to be electrical noise and is a common problem.
Cut-to-Length – A sub-routine within a motion control process or a standalone process in which feed material is processed at a preset distance. The distance is set prior to the performance of the task, and/or a secondary task such as a cut-off of the feed material. Feedback systems are employed to ensure repeatability of the preset feed length.
Detent Torque – Detent torque is the holding torque when no current is flowing in the motor. The maximum torque which can be applied to the shaft of an un-energized step motor without causing continuous rotation. The minimal torque present in an un-energized motor. The detent torque of a step motor is typically about 1% of its static energized torque.
Dynamic Torque – the torque developed by a motor while stepping at low rates.
Efficiency – In physics: the efficient energy use, useful work per quantity of energy, or mechanical advantage over ideal mechanical advantage, often denoted by the Greek lowercase letter η (Eta). In thermodynamics: efficiency is energy conversion efficiency, a measure of second law thermodynamic loss. Thermal efficiency: useful work per the higher heating value of the fuel. In computing: Algorithmic efficiency is optimizing the speed and memory requirements of a computer program, while storage efficiency as the effectiveness of computer data storage.
Electronic Clutch – The process of generating a slave profile based on master position or time periods by enabling and disabling electronic cam or gearing functions.
Electronic Gearing – A method that stimulates mechanical gears by electrically synchronizing one closed-loop axis to a second axis (open- or closed-loop) through a variable ratio.
Electronic Line Shaft – A virtual axis that is used as the master axis on a machine to which other axes are synchronized by electronic gearing or camming profiles.
Encoder – An encoder is a feedback device. It consists of a disc, vane, or reflector, typically attached to a motor shaft to provide digital pulses, which are provided to a translator and /or counters. This provides positional information if fed into a counter. Speed information may be derived if the time between successive pulses is measured and decoded.
Encoder Resolution – The number of electrically identified positions occurring in 360 degrees of input shaft rotation.
Event – A change-of-state of an input parameter, such as the triggering of a limit switch or proximity sensor.
Fault – The error received when a drive or control has attempted an illegal process and becomes disabled.
Feedback – Feedback is the measurement of the parameter that is being controlled. For a positioning system to accurately compensate for an error, the actual position must be known relative to the commanded position. In this case, position feedback would be used to provide the actual position.
Feedback Signal – The actual value detected by a sensor as a process is taking place. The feedback signal is part of a closed-loop control system.
Feedforward – A method that "precompensates" a control loop for known errors due to motor, drive, or load characteristics to improve response. It depends only on the command, not the measured error.
Gantry – An overhead framework that is designed to linearly move in the X, Y, and/or Z axes. Tooling or other devices are generally designed into the framework to perform various functions as it moves from one location to another.
Gearbox – A system of gears that transmits mechanical power from a prime mover, such as an electric motor, to a typically rotary output device at a lower momentum, but a higher torque.
Holding Torque – Holding torque is the maximum torque that can be externally applied to the motor shaft without causing continuous rotation when one or more phases of the motor are energized.
Home Position – A reference position for all absolute positioning movements. Usually defined by a home limit switch and/or encoder marker. Normally set at power-up
Homing – Locating a unique reference position at power-up for axis calibration.
Indexer – In the context of stepper motor-based systems, the indexer is a device that provides step and direction control signals to a stepper motor driver. More sophisticated dedicated stepper motor controllers will also have I/O points and various other higher level functions and programmability similar to a PLC. In many cases, a PLC may be used as an Indexer.
Indexing – An axis or axes in the process of moving to a pre-programmed position, at a defined velocity and acceleration/deceleration rate.
Interpolation – A coordinated move of two or more axes in a linear and/or circular motion.
Jog – An axis running at a fixed velocity and acceleration/deceleration rate, in a selected direction, with no specific destination.
Lead – The linear distance a nut on a lead screw travels during one revolution of the lead screw, e.g. in/rev
Lead Screw – A device that converts rotary motion into linear motion.
Limits – Sensors within a motion system that alert the control electronics that a physical end of travel has approached and that the motion is not allowed in a specific direction.
Linear Actuator – A linear actuator is an actuator that creates motion in a straight line, as contrasted with the rotary motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion; many other mechanisms are used to provide a linear motion from a rotating motor.
Linear Servo Motor – A linear servo motor is a "flattened" servo motor where the rotor is on the inside, and the coils are on the outside of a moveable u-channel.
Linear Slide – Linear slides are precision products designed to turn motion or torque into straight-line movements. Linear slides are designed to move mounted mechanisms across a given axis. Complete slides normally consist of at least a base, a saddle, adjusting screw and a straight gib.
Load – Any external resistance (static or dynamic) to motion that is applied to the motor.
On-Axis Accuracy – Difference between ideal position and real position after the compensation of linear errors. Linear errors include: cosine errors, inaccuracy of screw or linear scale pitch, angular deviation at the measuring point (Abbe error) and thermal expansion effects. The relation between absolute accuracy and on-axis accuracy is as follows:
Absolute Accuracy = On-Axis Accuracy + Correction Factor x Travel
Override – To force an axis to move during a faulted condition; often required to force an axis to move off of an over-travel limit switch.
Phasing – Adjusting the position of one axis with respect to others during synchronization or electronic line shafting. This is usually done while the axes are moving, and done to correct for small registration problems.
Pick and Place – An application in which objects are transferred from one place to another, such as a pill-sorting machine, medical vial (test tube) testing, or air-sample tester.
Pitch – The distance from any point on one thread of the screw to a corresponding point on the next successive thread, e.g. rev/in.
Positioning – Specifying a move by giving a target position, a velocity, and an acceleration rate. The target position can be an absolute position or a relative position from the current position.
Position Control – A type of control system designed for moving objects or machines to a known position. For example: stepper motors are used for position control.
Position Loop – The position loop operates by continuously comparing the target position with the current position. The difference between these two is the position error or following error.
Rated Speed – the speed specified by the manufacturer at which the motor produces its maximum rated power
Rated Torque – The rated torque is the torque-producing capacity of a motor at a given speed. This is usually specified with a torque/speed curve.
Servo Mechanism – A servomechanism may or may not use a servo motor. For example, a household furnace is a servomechanism that is controlled by a thermostat. Once a set temperature is reached, feedback signals the system to shut off, making it a "servo" in nature. The term "servo" describes more of a function or task, than it does a specific product line. The defining feature of a servomechanism is the use of feedback, creating a closed-loop system.
Servo Motor – A servo motor is a motor which is part of a servomechanism. It is typically paired with some type of encoder to provide positioning and speed feedback. A servo motor is an automatic device that uses an error-correction routine to control its motion. The term servo can be applied to systems other than a servo motor; systems that use a feedback mechanism such as an encoder or other feedback device to control the motion parameters. Typically, when the term servo is used, it applies to a 'Servo Motor' but is also used as a general control term, meaning that a feedback loop is used to position an item. A servo motor can be a DC, AC, or brushless DC motor, combined with a position sensor – in most cases, a digital encoder. The defining feature of a servo motor is that it operates in a closed-loop system (uses feedback).
Shielded Cable – an electrical cable with a common conductive layer surrounding its conductors, which is meant to provide electromagnetic shielding, thereby preventing EMI issues
Stepper Motor – A stepper motor (also referred to as step or stepping motor) is an electromechanical device achieving mechanical movements through conversion of electrical pulses. Stepper motors are driven by digital pulses rather than by a continuous applied voltage. Unlike conventional electric motors which rotate continuously, stepper motors rotate, or step, in fixed angular increments. A stepper motor is most commonly used for position control. With a stepper motor/driver/controller system design, it is assumed the stepper motor will follow digital instructions. One important aspect of stepper motors is the lack of feedback to maintain control of position, which classifies stepper motors as open-loop systems. Stepper motors can rotate forward or in reverse, but they cannot move large loads.
Step – A step is the movement of the rotor of a stepper motor from one energized position to the next.
Step Angle – The step angle is the nominal angle through which the shaft of a stepper motor turns between adjacent step positions. Step angle depends upon the motor and driving sequence (mode of drive). Smaller step angles result in higher resolution.
Step Increment – Step increment is an indication of step or motion size. Usually this is specified in degrees for a rotary motor and inches or millimeters for a linear motor.
Step (Stepping, Stepper) Motor – A Stepper is synonymous with Step and Stepping motor: a digital actuator, which operates from discrete pulses (input signals) and produces motion in discrete increments, which may be rotary or linear. See stepper motor definition above.
Step Position – the angular position that the shaft of an unloaded step motor assumes when energized. The step position is not necessarily the same as the detent position.
Torque – A rotational force. Torque is measured in N*m, lb*in, lb*ft, etc. 1 N*m is the torque produced by 1N of force applied to a lever arm that is 1m long.
Torque Limiter – A torque limiter is a mechanical protection device which causes the load to separate from the drive when an overload happens
Yaw, Pitch – Rotation of carriage around the Z axis (Yaw) or Y axis (Pitch), when it moves. The testing of on-axis accuracy, repeatability, and reversal error are made systematically with test equipment in an air-conditioned room (20 °C±1 °C). A linear cycle with 21 data points on the travel and 4 cycles in each direction gives a total of 164 points.
聲明:
- 文章轉(zhuǎn)載自ANAHEIM AUTOMATION,由愛澤工業(yè)翻譯,如有侵權(quán),請聯(lián)系刪除!
- 如有偏頗,歡迎指正!